

CHARGING CHARACTERISTICS

Floating - The optimum float voltage for a battery is temperature dependant, at 15 - 24°C the recommended value is 2.27 - 2.30V. It is recommended that battery installation sites are temperature controlled, however float voltage can be increased or decreased to compensate for temperature variations. Adjustment is calculated at +/- 3 mV per degree C.

Recommended Applied Float Voltage VPC				
2.33 - 2.35				
2.30 - 2.33				
2.27 - 2.30				
2.27 - 2.30				
2.25 - 2.27				
2.23 - 2.25				
2.21 - 2.23				

The most suitable charging method for battery life and performance is the constant voltage method with a limited initial current, usually limited to a maximum of $C_{10}/4$.

Innovative Features

- Completely maintenance free, sealed construction eliminates the need for watering
- Increased durability and deep cycle ability for heavy demand applications
- Fully tank formed plates
- Low impurity electrolyte
- Spill proof / leak proof
- Valve regulated Max internal pressure 2.5 psi
- Multi-position usage
- ABS Case and cover V0 on request
- Low self discharge
- FAA and IATA approved as nonhazardous.

Applications

- Float service
- Uninterruptible Power Supplies
- Medical
- Telecommunications
- Switch Gear
- Photovoltaic
- Solar
- Wind
- Control Systems
- Cellular Radio Stations
- Cathodic Protection
- Navigation Aids
- Marine equipment
- Electric Power Systems

	Capacity temperature correction Factor to be applied to Data at 20 Degrees C									
Discharge Time	0 °C	5 °C	10 °C	15 °C	20 °C	25 °C	30 °C	35 °C	40 %	
5 minutes to 59 minutes	0.8	0.86	0.91	0.96	1	1.037	1.063	1.085	1.1	
1 Hour to 100 Hours	0.86	0.9	0.93	0.97	1	1.028	1.05	1.063	1.07	

Specifications

Nominal Voltage 4, 6 & 12 Volts Design Life 5 Years

Operating Temperature -20 'C to 50 'C (Recommended)

Grid alloy Calcium / Tin lead alloy Plates Flat Pasted Absorbant Glass Mat Separator Active material High purity lead Case and cover ABS (VO on request) Float 2.27 - 2.30 VPC @20 C Cycling 2.4 @20 C Charge Voltage

Max, 2.4 VPC Max ripple 0.05C (A)

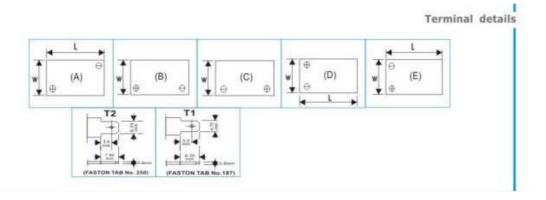
Electrolyte Sulphuric acid Low impurity

EPDM Rubber 1.5 to 2 psi (10,5 - 14 KPa) release pressure. Resealing Venting Valve

at 1 psi (7 KPa)

Terminal Various types Epoxy sealed by extended mechanical paths Torque setting The recommended torque value for all screw types is 5-7 Nm

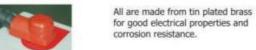
Cables Insulated cables / connectors supplied on request.


Haze Battery Company keenly encourages environmental awareness; PLEASE follow guidelines for the recycling /disposal of lead.

Terminal Options (left to right)

- hex5.jpg Automotive
- J Type
- Copper Flag
- J Type Adapter
- Insert

Insert are made from brass with copper, nickel and silver plating giving excellent mechanical, electrical and corrosion resistant properties.



Terminal Covers

T1 to T2 T2 to T1 Insert to T1 Insert to T2

